Adaptive Metropolis-Hastings samplers for the Bayesian analysis of large linear Gaussian systems

نویسندگان

  • Stephen KH Yeung
  • Darren J Wilkinson
چکیده

This paper considers the implementation of efficient Bayesian computation for large linear Gaussian models containing many latent variables. A common approach is to implement a simple MCMC procedure such as the Gibbs sampler or data augmentation, but these methods are often unsatisfactory when the model is large. This motivates the need to develop other strategies for improving MCMC. This paper considers the combination of adapting algorithms with the Metropolis-Hastings scheme in the construction of efficient MCMC schemes with good mixing properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metropolis - Hastings Sampling Using Multivariate Gaussian Tangents

We present MH-MGT, a multivariate technique for sampling from twice-differentiable, log-concave probability density functions. MHMGT is Metropolis-Hastings sampling using asymmetric, multivariate Gaussian proposal functions constructed from Taylor-series expansion of the log-density function. The mean of the Gaussian proposal function represents the full Newton step, and thus MH-MGT is the stoc...

متن کامل

Implementing componentwise Hastings algorithms

Markov chain Monte Carlo (MCMC) routines have revolutionized the application of Monte Carlo methods in statistical application and statistical computing methodology. The Hastings sampler, encompassing both the Gibbs and Metropolis samplers as special cases, is the most commonly applied MCMC algorithm. The performance of the Hastings sampler relies heavily on the choice of sweep strategy, that i...

متن کامل

Adaptive independence samplers

Markov chain Monte Carlo (MCMC) is an important computational technique for generating samples from non-standard probability distributions. A major challenge in the design of practical MCMC samplers is to achieve efficient convergence and mixing properties. One way to accelerate convergence and mixing is to adapt the proposal distribution in light of previously sampled points, thus increasing t...

متن کامل

A Metropolis-hastings Method for Linear Inverse Problems with Poisson Likelihood and Gaussian Prior

Poisson noise models arise in a wide range of linear inverse problems in imaging. In the Bayesian setting, the Poisson likelihood function together with a Gaussian prior yields a posterior density function that is not of a well known form and is thus difficult to sample from, especially for large-scale problems. In this work, we present a method for computing samples from posterior density func...

متن کامل

Partially collapsed Gibbs sampling & path-adaptive Metropolis-Hastings in high-energy astrophysics

As the many examples in this book illustrate, Markov chain Monte Carlo (MCMC) methods have revolutionized Bayesian statistical analyses. Rather than using off-the-shelf models and methods, we can use MCMC to fit application specific models that are designed to account for the particular complexities of a problem at hand. These complex multilevel models are becoming more prevalent throughout the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002